

Climate-Resilient Infrastructure: Adaptive Design and Risk Management

Bilal M. Ayyub, PhD, PE, Hon.M.ASME, Dist.M.ASCE

Professor and Director

Center for Technology and Systems Management Department of Civil and Environmental Engineering University of Maryland, College Park

Our Changing Precipitation Webinar Series

A conversation on the science of precipitation and planning for the future Session 2: From Science to Application – Climate Science, Hydrology,

and Planning - Part 1 September 21, 2021

New York City Subway Stations

Ida 2021

Sandy 2012

Outline

- Background: hazards & disruptions
- · Hazards: projections and extremes
- Resilience quantification (& recovery)
- · Climate-resilient infrastructure
- · Network resilience
- · Resilience enhancing strategies
- · Economics and socioeconomics
- Concluding remarks

Background: A Global Look

The Economic and Human Impact of Disasters in the last 10 years United Nations Office for Disaster Risk Reduction Damage (\$ billion) People affected (million) People killed 2005 93,075 29,893 2006 2007 2008 190 221 2009 46 15,989 2010 328,629 2011 2011 30.083 2012 2013 21,118 110 7.000 2014 102 \$1.4 trillion 0.7 million 1.7 billion Total damage Total people affected Total people killed

*Atlantic tropical storms (<u>></u>34knots) by year (1851-2019)

Extreme hazard projections in a changing climate Primary Challenges: Global to Local Projections

Downscaling and associated uncertainties

Global Climate Models (GCMs)

■ Model atmosphere, oceans, land surface, sea ice

- Represent the ocean as 0.2° to 2° grid cells
- Represent the atmosphere as 0.5° to 4° grid cells
 - Use fundamental physical equations:

- Conservation of momentum $\frac{\partial \vec{V}}{\partial \vec{l}} = -(\vec{V} \cdot \nabla) \vec{V} \frac{1}{\rho} \nabla p \vec{g} 2\vec{\Omega} \times \vec{V} + \nabla \cdot (k_m \nabla \vec{V}) \vec{F}_d$ Conservation of energy
- Conservation of energy $\rho c_{\varphi} \frac{\partial T}{\partial t} = -\rho c_{\varphi}(\vec{V} \cdot \nabla) T \nabla \cdot \vec{R} + \nabla \cdot (k_{T} \nabla T) + C + S$ Conservation of mass $\frac{\partial \rho}{\partial t} = -(\vec{V} \cdot \nabla) \rho \rho (\nabla \cdot \vec{V})$
- Conservation of H_2O (vapor, liquid, solid) $\frac{\partial q}{\partial t} = -(\vec{V} \cdot \nabla)q + \nabla \cdot (k_q \nabla q) + S_q + E$
- Equation of state

Solve: temperature, pressure, humidity, winds, cloud condensate, etc.

A. James Clark school of engineering

Global and Local Sea-level Rise

- Factors affecting water level
 - Volumes of water in these basins
 - Temperature and salinity levels
 - Shapes of the sea basins
 - Tectonic plates and ocean-based volcanoes at ridges (due to water pressure changes)
 - Subsidence

<u>Hazard</u>: An increase in water volume available to feed surges and waves in coastal areas

One foot increase

~ Several feet increase in surge + waves

Depending on coastal characteristics

_

Primary Challenges: Projections of Extremes

Primary Challenges: Projections of Extremes

Other Adaptation Challenges

2020, "Projecting Heat Waves Temporally and Spatially for

Local Adaptations in a Changing Climate: Washington..." Natural

Lombardo, F. and Ayyub, B., 2015. "Analysis of Washington, DC, Wind and Temperature Extremes ..." ASCE-ASME J.

Hazards, Springer

- Extreme precipitation and flash flooding
- Extended hot weather
- Urban heat
- Poor air quality
- Risk & Uncertainty. Increased power consumption and failure rate
- Salty water intrusion
 - · Hastened deterioration of infrastructure
- Adaptation technologies for existing infrastructure

Average daily wind

Resilience Quantification

Technologies needed for all stages and beyond

Chapter 2 and 3

Ability to prepare for and adapt to changing conditions and withstand and recover rapidly from disruptions)

Persistence of its functions and performances under uncertainty in the face of disturbances

Ayyub, B. M., "Systems Resilience for Multi-Hazard Environments: Definition, Metrics and Valuation for Decision Making," Risk Analysis J., 34(2), DOI: 10.1111/risa.12093, 2014.

$$\begin{aligned} &\text{Resilience}(R_e) = \frac{T_i + F\Delta T_f + R\Delta T_r}{T_i + \Delta T_f + \Delta T_r} & &\text{Failure}(F) = \int\limits_{t_i}^{t_f} f dt \\ &R_e \geq 0 & &\text{Recovery}(R) = \frac{t_f}{t_e} Q dt & &\text{Recovery}(R) = \frac{t_f}{t_e} Q dt$$

Measuring Performance

Chapter 2 and 3

Examples • Transportation: Roads • Network topology: efficiency · Community wellbeing **Aggregated Versus Multi-dimensional Integrated** Performance: water distribution (· Fire hydrants: volume and pressure • User consumption: volume

	STSTEMS	PERFORMANCE	UNITS
	Houses and buildings	Space availability Elevation	Area per day Distance above water level
<	Transportation: Roads	Throughput traffic	Count per day
	Facilities: Water treatment plants	Water production capacity	Volume per day
	Infrastructure: Water delivery	Water available for consumption	Volume
<	Coastal protection: Vegetation and dunes	Protection provided	Level of protection in terms of surge/wave height), width and/or volume
	Electric power distribution	Power delivered	Power per day
	Communication: Wireless	Capacity	Volume per day
/	Healthcare: Clinics	Patients per day	Count per day
		Economic output	Dollars

Quality of life

(consumption)

Dollars

Dollars

A. James Clark

and quality

Delivery: reliability Credit: Dr. C. Davis

Multi-dimensional Performance and Data Needs

Communities

where:

Data needs, sources and uncertainty

Probability of an event (E) or related scenario at time tAnnual probability of a hazard (H) under the conditions defined by EProbability of a failure (F) upon the occurrence of HLoss (L) upon the occurrence of F

Annual discount rate

Recovery Profile: New Orleans and Hurricane Katrina,

August 23-31, 2005

City of New Orleans Ground Elevations

Most destructive natural disaster in American history, 90,000 mi² (233,000 km²) of land impacted, an area the size of the United Kingdom

- Total direct damage \$108 billion (in 2005 US\$)
- Direct and indirect fatalities 1,833
- Insurance claims fulfilled of \$41.1 billion (private) and \$16.1 billion (public)
- Post-Katrina protections of \$120.5 billion on the Gulf Region

- Challenges in characterizing recovery
 - Multidimensionality
 - Transfers to other regions
 - Disruptions during recovery
- Population growth has not kept up with the GDP growth
 - Perhaps attributable to changes in the composition of the industries, population skill levels, and incomes

40

Recovery Profile: Bridge Failure

August 1, 2007

Technology: Seismic structural fuses

Eight lane (Interstate 35 W crossing the Mississippi River in Minneapolis) Steel truss arch bridge collapsed during rush hour Deaths = 13, Injuries = 145, Average daily traffic = 140,000 vehicles Replacement bridge fast-tracked opened on September 18, 2008

Single-step recovery

Recovery time:
About one year
Bridge robustness:
0%

Recovery profile:

A single-step recovery profile

Lifeline Infrastructure: Network Resilience

In collaboration with **Tongji University: Tunnels and Metro Systems**

Team: B. M. Ayyub, Y. Saadat, Y.J. Zhang, D.M. Zhang, F. Du, H.W. Huang, and M. Beer

Railroads: **Passengers** and Freight

Ongoing Work: Resilience of Networks

- Tunnels
 - Performance
 - Quantification of resilience
 - Enhancement of resilience
- Metro systems
 - Network definition
 - Interconnectedness and network vulnerability
 - Network resilience
 - Enhancement strategies
- Hazards
 - Water (surge and wave) level rise
 - Flooding of stations

Zhang, F., Du, F., Huang, H., Zhang, D., Ayyub, B. M., and Beer, M., 2018. "Resiliency Assessment of Urban Rail Transit Networks: Shanghai Metro as an Example," Safety Science, Elsevier, Volume 106, July 2018, Pages 230–243, https://doi.org/10.1016/j.ssci.2 018.03.023.

Shanghai

Characteristic of Shanghai Metro Network

Impacts of Water Level Rise on Shanghai Metro Network

Washington D.C. Metro

Infrastructure for Community Resilience

Climate-Resilient Infrastructure (ASCE MOP140, 2018)

Need

Infrastructure resilience necessary for supporting community resilience

Objective

Development or enhancement of best practices and standards for resilient infrastructure

Manuals of Practice (MOPs) and ASME Guidance Documents

General documents for all hazards and all systems with needs to develop hazardspecific or sector-specific documents (e.g., electric-power distribution Guides) Hazard-Resilient Infrastructure (ASCE MOP144, 2021)

General for all hazards and all Systems

Practical Resilience Metrics for Coastal Infrastructure Features (USACE, 2019)

Infrastructure: Needs

 2018 U.S. Census Bureau statistics: about \$1.3 trillion in infrastructure in the U.S. a year including bridges, buildings, power plants, and much more

- Most likely are not designed to account for a changing climate.
- With a design life of 50 or 100 years, or even longer, these projects are going to experience greater hazards and more extremes than they are designed for

Uncertainties

Known unknowns \rightarrow Reliability-based or Robust design Unknown unknowns \rightarrow Adaptive design

ASCE News Jan 2019

The dilemma for engineers is that the past does not represent the future

Ayyub, B. M., Medina, M., Vinson, T., Walker, D., Wright, R. N., AghaKouchak, A., Barros, A. P., Cerino, A. C., Conray, R. P., Fields, R. E., Francis, O. P., Olsen, J. R., Samaras, C., and Vahedifard, F., 2018. Climate-Resilient Infrastructure: A Manual of Practice on Adaptive Design and Risk Management. Edited by B.M. Ayyub, ASCE Manual of Practice (MOP) 140, American Society of Civil Engineers, Reston, VA. Interviewed by ASCE News: https://news.asce.org/at-the-crossroads-of-civil-engineering-and-climate-change/

Offered to Planners and Engineers ASCE Manual of Practice #140 (2018)

- Framework of the Manual of Practice
 - Non-prescriptive
 - Quantitative: probabilistic
 - Analytic methods with <u>native</u> <u>measurement units</u> of potential losses that would support <u>economic valuation</u> and <u>benefit/cost analysis</u>
 - Adaptive solutions based on the concept of real options
- A step towards developing <u>standards</u>
 - Development of standards could take years
 - An interim solution

ASCE Manual of Practice #140 (2018)

Content

Chapter 1. Introduction

Chapter 2. A Changing Climate: Problem Definition Hazards

Chapter 3. Observational Method

Chapter 4. Characterization of Extremes and Monitoring

Chapter 5. Flood Design Criteria

Chapter 6. Flood Loads

Chapter 7. Adaptive Design and Risk Management

Chapter 8. Data and Information Sources

Appendix A. Terminology

Appendix B. ASCE Standards and Climate Change

Appendix C. Methodology for Statistical Computations

Appendix D. Adaptation Technologies

Needs

Needs

Key chapter -

see example

Lead Authors:

Bilal M. Ayyub, Ph.D., P.E., Dist.M.ASCE (Editor) Miguel Medina, Ph.D., P.H., F. ASCE Ted Vinson, Ph.D., P.E., M.ASCE Dan Walker, Ph.D., A.M.ASCE Richard N. Wright, Ph.D., NAE, Dist.M.ASCE Contributing Authors:

Amir AghaKouchak, Ph.D., P.E., M.ASCE Ana Paula Barros, Ph.D., P.E., F. ASCE A. Christopher Cerino, P.E., M.ASCE Ryan P. Conry, P.E., S.E. M.ASCE Robert E. Fields, P.E., M.ASCE Oceana P. Francis, Ph.D., P.E., M. ASCE J. Rolf Olsen, Ph.D., A.M.ASCE Constantine Samaras, Ph.D., A.M.ASCE Farshid Vahedifard, Ph.D., P.E., M.ASCE

Chair
James R. Harris, P.E., F.ASCE, NAE
(ASCE/SEI 7, J.R. Harris &
Company, Denver, CO), Vice Chair Company, Denver, COJ. Vice Chair

Hugo Losiciga, Ph.D., P.E., D.WRE,
FASCE (University of California,
Santa Barbara)

Christopher P Jones, M.ASCE
(ASCE 24, Durham, NC)
Sanj Malushte, Ph.D., P.E., F.ASCE
(Bechtel, Reston, VA)

Additional Reviews by Organization

American Meteorological Society Water Utility Climate Alliance

Methodology (Framework)

Chapter 7. Adaptive Design and Risk Management

- Context and Objectives
- · Hazard Identification and Projection
 - · Uncertainty Analysis
 - Extreme Value Analysis
- Failure Probability Estimation
- · Economics of climate resilience
 - Exposure and Loss Analysis
 - · Economic Valuation
- · Risk Quantification as Loss **Exceedance Probabilities**
- Development of Feasible Design Adaptations for Decision Making
 - · Cost and Benefit Estimation and Analysis
 - Risk-Informed Decision Analysis
- · Hazard and Risk Monitoring
 - Risk-Informed Adaptation Analysis for Actions During Life

Infrastructure

Methodology (Underlying Model)

Chapter 7. Adaptive Design and Risk Management

Quantifying climate risk for a system brings together the probabilities and consequences in terms of a loss (L) random variable as follows:

$$L = \sum_{t=1}^{T} \left(\sum P(E)P(H|E)P(F|H)(L|F)e^{-it} \right)$$

where

L Loss (L) at time t

P(E) Probability of an event (E) or climate related scenario at time t

P(H|E) Annual probability of a hazard (H) under the conditions defined by E

P(F|H) Probability of a failure (F) upon the occurrence of H

L|F Loss (L) upon the occurrence of F

i Annual discount rate

27

28

Infrastructure

ASCE Standards and Adaptation to a Changing Climate

Appendix B. ASCE Standards and Climate Change Table B-1. (Continued) Source: MOP 140 Needs Title of standard Title of standard ITIBU OS SIGNATURA

N-725 Culdellare for Design and Analysis of Nuclear Safety-Related Earth Structures

Standard for the Structural Design of 1 Composite Slabs

Sciencia Analysis of Safety-Related Nuclear Structures and Commentary

Building Code Requirements and Specifibility Code Requirements and Specifibility Code Requirements and Specifibility Code Reputer Structures

Minimum Design Loads for Buildings and I Other Structures Standard Practice for Direct Design of Buried Precast Concrete Box Sections Standard Practice for Direct Design of Precast Concrete Pipe for Jacking in Trenchless Construction ANSI/ASCE 1-82 ANSI/ASCE 3-91 ASCE 27-00 ASCE 4-98 * Grouped as follows: Trenchies Construction
Standard Practice for Direct Design of
Precast Concrete Box Sections for Jacking
in Trenchies Construction
Seismic Evaluation of Existing Buildings
Design and Construction of FrostProtected Shallow Foundations
Comprehensive Transboundary International Water Quality Management
Agreement ASCE/SEI 5-13 and ASCE 28-00 I. Change in loading 6-13 ASCE/SEI 7-10 II. Change in surface SEI/ASCE 8-02 Specification for the Design of Cold-Formed Stainless Steel Structural hydrology (including flood EWRI/ASCE 33-01 Members
Standard Practice for Construction and
Inspection of Composite Slabs
Design of Latticed Steel Transmission ANSI/ASCE 9-91 extent or frequency, or tional water Quanty Management Agreement Standard Guidelines for Artificial Recharge of Ground Water Regulated Riparian Model Water Code Seismic Evaluation and Retrofit of Existing Buildings ASCE/SEI 10-15 inundation owing to sea Structures
Guideline for Structural Condition Assessment of Existing Buildings
Standard Guidelines for the Design of
III, IV SEI/ASCE 11-99 ASCE/EWRI 40-03 ASCE/SEI 41-13 level rise) ANSI/ASCE/EWRI 12-13 Standard Guidelines for the Design of III, IV Urban Subsurface Drainage Standard Guidelines for the Installation of III, IV Urban Subsurface Drainage Standard Guidelines for the Operation and Maintenance of Urban Subsurface Buildings Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities Standard Guidelines for the Design of III. Change in groundwater 12-13 ANSI/ASCE/EWRI 13-13 ANSI/ASCE/EWRI 14-13 ASCE/SEI 43-05 table height (including that ASCE/EWRI 45-05 and Manineanace of Urban Subsuriace
Drainage
Standard Practice for Direct Design of
Buried Prescast Concrete Pipe Using
Standard Installations (SIDD)
Standard installations (SIDD)
Standard for Load and Resistance Factor
Design (LRDP) for Engineered Wood
Aris-Supported Structures
Instructural Applications of Steel Cables for I
Buildines Urban Stormwater Systems Standard Guidelines for the Operation owing to sea level rise) ASCE 15-98 ASCE/EWRI 47-05 and Maintenance of Urban Stormwater IV. Changes in temperature Systems
Design of Steel Transmission Pole
Structures
Design of Fiberglass-Reinforced Plastic
(FRP) Stacks ASCE/SEI 48-11 ASCE/SEI 52-10 ASCE 17-96 ASCE/SEI 19-10 ANSI/ASCE/EWRI Guidelines for the Physical Security of Buildings
IV
Installation of Pile Foundations
Automated People Mover Standards
I, IV 56-10 Water Utilities
ANSI/ASCE/EWRI Guidelines for the Physical Security of 57-10 Wastewater/Stormwater Utilities
ASCE/EWRI 60-12 Guideline for Development of Effective
Water Sharing Agreements ASCE/SEI 24-14 Flood Resistant Design and Construction II

Example: LOSSAN Adaptive Design

Use of real options

LOSSAN (Los Angeles to San Diego) Rail Corridor follows the sea coast and crosses low-lying areas on trestles

Uses precast piers and caps to allow insertion of additional pier segments if needed to adapt to flooding hazard

Dial, R., Smith, B., and Rosca, Jr., G., "Evaluating Sustainability and Resilience in Infrastructure: Envision™, SANDAG and the LOSSAN Rail Corridor," Proceedings of the 2014 International Conference on Sustainable Infrastructure, American Society of Civil Engineers, pp 164-174. ISBN 978-0-7844-4

Nature-Based and Natural Solutions

- Nature-Based Solutions: Use of natural or semi-natural areas or systems to mitigate environmental impacts, increase efficiency or secure ecosystem services (barrier islands, vegetations, etc.)
- Natural Infrastructure: Strategic use of networks of natural lands, working landscapes, and other open spaces to conserve ecosystem values and functions with benefits to humans (dunes, vegetations, etc.)
- Ecosystem-Based Adaptation: use of biodiversity and ecosystem services as part of an overall adaptation strategy (related concepts: soft engineering, eco-disaster risk reduction, nature-based defences, green infrastructure)

United Nations Environment World Conservation Monitoring Center

Levees

- Hardening systems
 - Land-use/associated policies
 - System designs
 - · Technologies, such as using engineered weakpoints in systems acting like fuses
- Soft solutions
 - Natural and nature-based infrastructure
 - Insurance and insurance securities
 - Social programs, governmental help for recovery
 - Societal measures, such as private programs

Technologies: sensors, drones, imaging, etc.

Ayyub, B. M., Pantelous, A., and Shao, J., 2016. "Towards Resilience to Nuclear Accidents: Financing Nuclear Liabilities via Catastrophe Risk Bonds" ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mechanical Eng., DOI: 10.1115/1.4033518.

Beaches and dunes

Performances: Natural and Nature-Based Features Examples

- Dunes and beaches
 - Berm height and width
 - Beach slope
 - Sediment grain size and supply
 - Dune height, crest and width
 - Presence of vegetation
- Vegetated features, e.g., marshes
 - Marsh, wetland or submerged aquatic vegetation
 - Elevation and continuity
 - Vegetation type and density
 - Spatial coverage and health

Quantification: essential for risk management

Resilience: recovery and multiple events

g	etation		Breaking of offshore waves, Attenuation of wave energy, Reduction or prevention of	offshore waves, Attenuation of wave energy, Reduction or prevention of inland water transfer,	Breaking of offshore waves, Attenuation of wave energy, Slowing of	Wave attenuation and/or dissipation,	Wave attenuation and/or dissipation, Shoreline
	Ut Array Corps of Superace, Corps and Corps Corps and Corps Corps and Corps	Benefits	inland water transfer	Increased infiltration	inland water transfer	Sediment stabilization	stabilization, Soil retention
	Neuganin hamos Anasan, Angous Practical Resilience Metrics for Coastal Infrastructure Features National Ages	0.0	Berm height and width, Beach slope,	Marsh, wetland, or submerged		Island elevation, length, and	Vegetation height and
		Performance factors	Sediment grain size and supply, Dune height, crest, and width, Presence of vegetation	aquatic vegetation elevation and continuity, Vegetation type and density, Spatial extent	Reef width, elevation, and roughness	width, Land cover, Breach susceptibility, Proximity to mainland shore	density, Forest dimension, Sediment composition, Platform elevation 33

Performances: Natural and Nature-Based Features

USACE 2013

Ayyub 2019

Linkov et al. 2013

Ready for Tomorrow: Seven Strategies for Climate-Resilient Infrastructure 2019 The Hoover Institution/Stanford University Policy document

Strategies

- 1. Make better decisions in the face of uncertainty
- 2. View infrastructure systemically
- 3. Take an iterative, multi-hazard approach
- 4. Improve and inform cost-benefit analysis
- 5. Mainstream nature-based infrastructure
- 6. Jump-start resilience with immediate actions
- Plan now to build back better

over Institution, Stanford University Stanford, CA 94305-6003

A. James Clark

Hoover Institution in Washington The Johnson Center 1399 New York Avenue NW, Suite 500

Principles

Be proactive, fair, inclusive and comprehensive

- · Hill, A. C., Mason, D. J., Potter, J. R., Hellmuth, M., Ayyub, B. M., Baker, J. W., "Ready for Tomorrow: Seven Strategies for Climate Resilient Infrastructure," A Hoover Institution Essay, Stanford University, The Johnson Center, Washington D.C.
- https://www.hoover.org/research/ready-tomorrow-seven $\underline{strategies\text{-}climate\text{-}resilient\text{-}infrastructure}$
- Ayyub, B. M., and Hill, A., 2019, "Climate-Resilient Infrastructure: Engineering and Policy Perspectives," The Bridge, National Academy of Engineering (NAE), June

2019 briefing at the U.S. Senate The New Green Deal (Senator Sanders)

Concluding Remarks

- Climate-resilient infrastructure: consistency across sectors and hazards
- Measurement science: resilience including recovery
- Technologies needed for different phases and integration
- Systems and networks
- Economics of resilience enhancing strategies
- Socioeconomics of resilience

Books

Reliability

Resources available

Center for Technology and Systems Management

ASME Journal of Risk and Uncertainty in Engineering Syste Contact: Professor Bilal M. Ayyub, Editor in Chief, ba@umd.edu

Thank you

Hazards Causing Disruptions

The United Nations Office for Disaster Risk Reduction (Year 2011 as an example)

- 302 natural disasters worldwide including the earthquake and tsunami that struck Japan
- US\$364 billion in direct damages
- 30,083 fatalities
- Storms and floods accounted for 70%
- · Earthquakes producing the greatest number of fatalities

Average annual losses in the US amount to about \$55 billion (2011)

Super Storm Sandy

- October 2012
- 305,000 homes destroyed in New York
- · 2.2 million power outages
- 265,300 businesses impacted
- 121 people killed

Hurricanes Katrina & Rita

- August 2005
- 214,700 homes destroyed in Louisiana
- 800,000 power outages
- 18,700 businesses impacted
- 1,800 people killed

Climate change is expected to increase storm intensity

Severity: interactions between storms, and property and people

Community Resilience

Coastal Exposure (US East Coast) Urban Land Institute 2013

oastal States	Coastal	Total	Coastal as a	
	Exposure (2012 US	Exposure	Percentage of	
	Billions)	(2012 US	Total	2
		Billions)		
Florida	\$2,800.8	\$3,562.7	79%	%
New York	2,679.5	4,385.7	61	100
Texas	1,143.5	4,406.7	26	- 100
Massachusetts	807.2	1,505.1	54	1000
New Jersey	706.5	2,081.2	34	-
Connecticut	542.5	843.8	64	- 40
Louisiana	275.1	790.4	35	940
South Carolina	229.6	814.7	28	100
Virginia	176.7	1,685.9	10	-
North Carolina	159.6	1,756.2	9	-
Maine	157.7	273.6	58	1500
Alabama	118.7	903.9	13	-
Georgia	101.8	1,861.7	5	-
Delaware	76.9	200.5	38	200
New Hampshire	61.0	259.9	23	1000
Mississippi	59.0	464.5	13	10000
Rhode Island	55.6	199.5	28	
Maryland	17.1	1,262.2	1	-
Total, coastal	\$10,168.8	\$27,258.3	37%	%
states				
U.S. total	\$10,168.8	\$62,091.1	16%	%

Value of insurable properties along the U.S. Gulf and East coasts:

More than \$10 trillion in 2012

(an increase of almost 15 percent from 2007)